

OICW Non-Lethal Munition

14 May 2002

Camilo A. Sanchez
US Army TACOM-ARDEC
Close Combat Armaments Center
(973) 724-5495
csanchez@pica.army.mil

Pre-Milestone A Program

Program: Objective Individual Combat Weapon Non Lethal (OICW NL) Munition

Concept:

• Exploit the ability of the OICW to airburst munitions at a precise location in space to emplace or employ NL concepts.

OICW NL Risks and Challenges

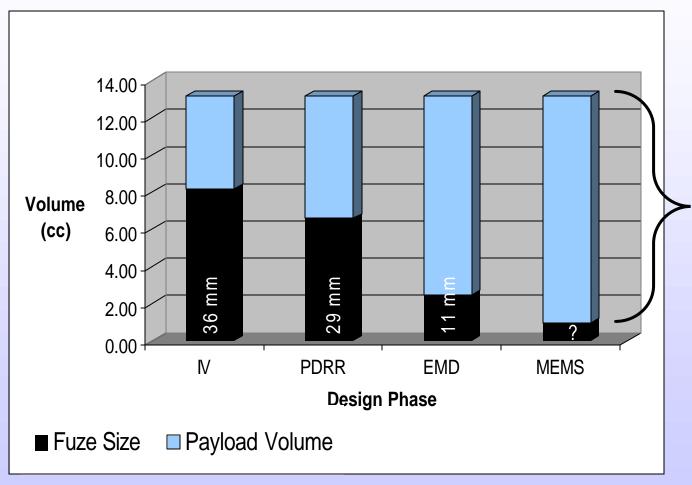
- Potential lethal injurious effects from projectile airburst and parasitic mass
- 20 mm Volume limitations on payload effectiveness
- Fuzing development (MEMS S&A)
- Burst point precision

Key Participants

Lab/Office	POC	Phone
• TACOM-ARDEC Projectile Design	F. Dindl	(973) 724-6761
• SBCCOM/ECBC Modeling & Simulation, P	L. Bickford ayload Experime	(410) 436-2231 nts
• Oak Ridge NL Frangible Materials Develo	Dr. Lowden opment	(865) 576-2769
• PM OICW OICW Interface	T. Hartmann	(973) 724-8515
 Alliant Techsystems Map Parts and Services 	ole Grove, MN	
• JNLWD Quantico, VA	M. Grussendor	f (703) 784-2646

Sponsor, Requirements Generation

OBJECTIVE INDIVIDUAL COMBAT WEAPON (OICW) NON LETHAL MUNITION


Concepts carried forward

- Integrated Proximity Sensor w/ Reverse Thrust Concept (not pursued because of multiple technologies required for development)
- Controlled Residual Kinetic Energy Concept (selected concept)

OICW Fuze vs. Payload Volume

NL Agent over 2X current amount.

Incapacitation area maximized

More effective over harsher atmospheric conditions

Program Documentation

Document Title	<u>Approved</u>	
 Pre-Phase A Exit Criteria (MS A Entrance Criteria) 	26 Apr 00	JNLWD RIG
• OICW NL Preliminary Legal Review	06 Jul 01	
OICW Approved ORD	24 Feb 00, Dra	ft Rev 24 Mar 02
• SCG for JNLW Program	Apr 98, Draft R	Rev May 01
• SCG for OICW	Aug 00, Draft l	Rev 22 Mar 02

OICW Non-Lethal Munition Milestone A Entrance Criteria

Operational Input

Criteria	Threshold	Goal
Dispense Payload:	250m	5m-1000m
Technology	4	5
Readiness Level		
(TRL)		

TRL 4 – Component and or breadboard validation in a laboratory environment

TRL 5 – Component and or breadboard validation in a relevant environment

OICW NL Technical Demonstration

- Ballistic test conducted 12 Feb 02
- Attended by SOCOM, Army, AF, JNLWD representatives
- Fired several cartridges to function @ 250 m
- Witness panel to initiate projectile
- A surrogate fuzing system was utilized
- Target (rigid foam) 5 m beyond witness panel

Results

- Demonstrated ranged initiation and disperse simulant (smoke pellets)
- All parasitic mass non-lethal
- Projectile velocity reduced to non-lethal levels after airburst
 - Projectile recovered laying between witness panel and target
 - No perforation of target
 - No projectile rupture

OICW NL Payload Tests

Payload Test set up (Jan 02)

- Pyrotechnic CS 3/16 in, 1/4 in pellets 5-6 gms, starter mix, electric match, kraft paper
- CS initiated using various burst scenarios (0, 250, 500, 750, 1000 fps)
- 3 filter readings, 35 liter/minute, mixing fan

Results

- Max average airborne CS .16%
- Pellets not optimized
- Airspeed may have prevented CS dissemination
- Below calibration limits of analytical procedure used

OICW NL Payload Tests

Payload Test set up (19 Apr 02)

- Pyro CS ground 3/16-in pellets (3.2g)
- Bulk CS1 (1.6g)
- Custom spin fixture (10,400 rpm) to simulate projectile in flight spin rate
- 3 filter readings, 35 liter/min, mixing fan
- More realistic expulsion conditions

Results

- Pyro CS: three round average, 0.09g airborne (measured) yielding 7% airborne CS
- Bulk CS1: three round average, 0.51g airborne (measured) yielding 32% airborne CS

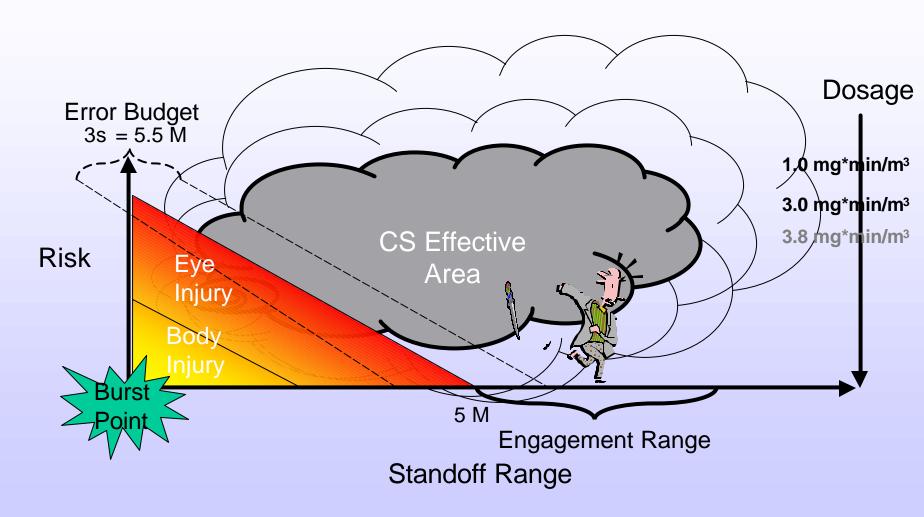
CS Payload Summary

- Pressed/Cast CS HE ruled out as dissemination technique
 - Required standoff was believed to be high
- Pyro/CS Poor performer
 - 60 % pyro required
 - Pellets not optimized
- Bulk CS1 Best approach to date
 - Need to increase CS packing density to 8.4 gm
 - Need to maximize airborne yield 32% to 70%

OICW NL Human Effects

- The preliminary focus is on CS effect and overcoming the KE of projectile near target.
- Working with Human Effects Center of Excellence (HECOE), Brooks AFB, TX to evaluate effects on the target both effectiveness and risk to the target's health and safety
- Provided 20 vs. 40mm Payload Analysis to HECOE May 01
- Submitted Target Human Effects Evaluation Plan (THEEP) 10 Jan 02
- Initial Human Effect Review Board (HERB) meeting scheduled 11 Jul 02

OICW NL Human Effects


Target Human Effects Evaluation Plan (THEEP)

- RCA (CS irritant) effectiveness against the intended: Target Response
 - CS Dosage CS incapacitation metric needs further definition
 - CS route of entry ocular (eyes), cutaneous (skin), and inhalation (breathing).
- Collateral health hazards to humans: Risk of unintended Effects
 - Blunt trauma due to incomplete/improper deceleration
 - Eye injury CS, Tungsten Powder
 - Skin perforation CS, Tungsten Powder
 - Inhalation/lungs Toxicology
 - Other: Heat, Noise

Conceptual Delivery Effects

Legal

Legal Issues: None

- Army JAG preliminary legal review received 06 Jul 01
 - •Concludes that the NL Airburst OICW munition concept appears consistent with law obligations of the US, including law of war.
 - •Memorandum was coordinated with the Navy JAG and the Staff Judge Advocate to the Commandant of the Marine Corps, who concur with its analysis and conclusions.

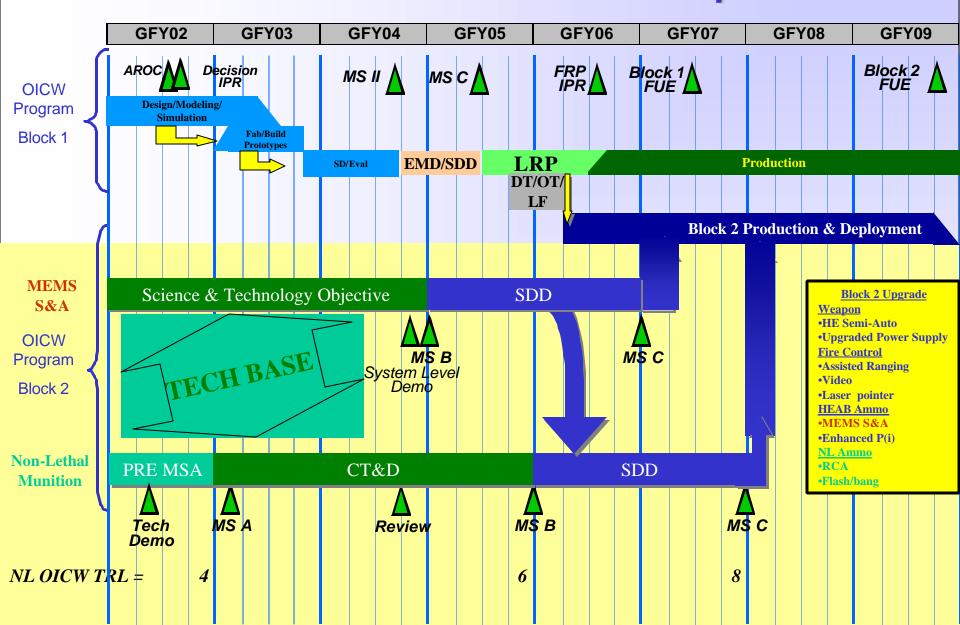
"An OICW non-lethal munition poses no new questions with respect to unnecessary suffering."

Program Accomplishments

- Favorable Preliminary Legal Review received Jul 01
- Conducted Technical Demonstration 12 Feb 02
- Penn St U Independent Technical Review Panel assessed technical feasibility and military worth of the OICW NL munition 25 Apr 02
- Revisited Chamber test for CS payload effectiveness 19 Apr 02

Future Plans

- Go/No go Decision meeting 29 May 02
- Milestone A Decision 1Q FY03



Pre-MSA Schedule for the OICW NL Munition

	FY00	FY01	FY02
Prel. Legal review			
Indep. Tech. Assessment			
Technical Dev. & Demo NL Deployment 250m from launch			\wedge
Static Payload Dissemination NL Payload Analysis Study			
Phase A Program Plan Delivery			
Go/No Go Decision Rec. Mtg			
JCIG Recommendation			
IPT Decision			
Milestone A (for "Go" Decisions)			

OICW System Schedule Non-Lethal & MEMS S&A Development

